Shear stress induces human aortic endothelial cell apoptosis via interleukin-1 receptor-associated kinase 2-induced endoplasmic reticulum stress
نویسندگان
چکیده
Atherosclerosis is characterized by localized lesions distributed in the arterial tree due to the shear stress produced by blood flow. Endothelial cells are directly affected by alterations in blood flow. Dysfunction and injury to endothelial cells has been hypothesized to initiate the pathological processes of atherosclerosis. The present study aimed to investigate the mechanism of shear stress‑induced endothelial cellular apoptosis. Shear stress was generated using an artificial device to mimic the impact of disturbed blood flow on cultured human aortic endothelial cells (HAECs). Cellular apoptosis was assessed using a terminal deoxynucleotidyl transferase dUTP nick end labeling assay; an ELISA assay was used to detect the produced interleukin (IL)‑1β; specific small interfering (si)RNA was used to knockdown the expression of interleukin‑1 receptor‑associated kinase 2 (IRAK2) in HAECs and the expression levels of 78 kDa glucose‑regulated protein, DNA damage‑inducible transcript 3 protein (CHOP), IRAK2 and IL‑1β were evaluated using western blotting. The results of the present study demonstrated that artificial shear stress induced endoplasmic reticulum (ER) stress, IL‑1β production and apoptosis in HAECs in a time‑dependent manner. The inhibition of ER stress, and treatment with interleukin‑1 receptor antagonist protein and siRNA against IRAK2 attenuated shear stress‑induced CHOP signaling‑mediated cellular apoptosis. Therefore, overproduction of IL‑1β exacerbated shear stress‑induced ER stress‑mediated apoptosis via the IRAK2/CHOP signaling pathway in endothelial cells.
منابع مشابه
Carbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress.
Carbon monoxide (CO), a reaction product of the cytoprotective heme oxygenase (HO)-1, is antiapoptotic in a variety of models of cellular injury, but the precise mechanisms remain to be established. In human umbilical vein endothelial cells, exogenous CO activated Nrf2 through the phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK), resulting in HO-1 expression. CO-indu...
متن کاملAsymmetric dimethylarginine downregulates sarco/endoplasmic reticulum calcium-ATPase 3 and induces endoplasmic reticulum stress in human umbilical vein endothelial cells
Cardiovascular disease is the leading cause of mortality in patients with chronic kidney disease. Endothelial cell injury and apoptosis may promote atherosclerosis and cardiovascular disease. The present study investigated the potential mechanisms of asymmetric dimethylarginine (ADMA)‑induced apoptosis in human umbilical vein endothelial cells (HUVECs). It was demonstrated that ADMA decreased B...
متن کاملActivated Protein C Induces Endoplasmic Reticulum Stress and Attenuates Lipopolysaccharide-Induced Apoptosis Mediated by Glycogen Synthase Kinase-3β
This study investigated the relationship between antiapoptotic activities induced by activated protein C and endoplasmic reticulum stress. In this study, it was observed that activated protein C elicited a rise in glucose-regulated protein 78 and glycogen synthase kinase-3β and inhibited apoptosis in human umbilical vein endothelial cells induced by lipopolysaccharide. Calcium inhibition did no...
متن کامل20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol induces apoptosis via induction of endoplasmic reticulum stress in human colon cancer cells.
Previously, we reported that 20-O-(β-D-gluco-pyranosyl)-20(S)-protopanaxadiol (Compound K, a meta-bolite of ginseng saponin) induces mitochondria-dependent and caspase-dependent apoptosis in HT-29 human colon cancer cells via the generation of reactive oxygen species. The aim of the present study was to elucidate the mechanism underlying apoptosis...
متن کاملAtheroprotective Pulsatile Flow Induces Ubiquitin-Proteasome–Mediated Degradation of Programmed Cell Death 4 in Endothelial Cells
OBJECTIVES We recently found low level of tumor suppressor programmed cell death 4 (PDCD4) associated with reduced atherosclerotic plaque area (unpublished). We investigated whether atheroprotective unidirectional pulsatile shear stress affects the expression of PDCD4 in endothelial cells. METHODS AND RESULTS En face co-immunostaining of the mouse aortic arch revealed a low level of PDCD4 in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2017